Abstract

Optical probing, though developed as silicon debugging tools from the chip backside, has shown its capability of extracting secret data, such as cryptographic keys and user identifications, from modern system-on-chip devices. Existing optical probing countermeasures are based on detecting any device modification attempt or abrupt change in operating conditions during asset extraction. These countermeasures usually require additional fabrication steps and cause area and power overheads. In this article, we propose a novel low-overhead design methodology to prevent optical probing. It leverages additional operational logic gates, termed as “CONCEALING-Gates,” inserted as neighbor gates of the logic gates connected to the nets carrying asset signals. The switching activity of the asset carrying logic is camouflaged with the switching activity of the concealing-gate. The input signal and placement in the layout of the concealing-gates must be selected in such a way that they remain equally effective in preventing different variants of optical probing, i.e., electro-optical frequency mapping and Electro-optical probing. The methodology is suitable for the existing ASIC/FPGA design flow and fabrication process, since designing new standard logic cells is not required. We have performed a comprehensive security evaluation of the concealing-gates using a security metric developed based on the parameters that are crucial for optical probing. The attack resiliency of the logic cells, protected by concealing-gates, is evaluated using an empirical study-based simulation methodology and experimental validation. Our analysis has shown that in the presence of concealing-gates, logic cells achieve high resiliency against optical contactless probing techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.