Abstract

We present new algorithms for computing zeta functions of algebraic varieties over finite fields. In particular, let X be an arithmetic scheme (scheme of finite type over Z), and for a prime p let zeta_{X_p}(s) be the local factor of its zeta function. We present an algorithm that computes zeta_{X_p}(s) for a single prime p in time p^(1/2+o(1)), and another algorithm that computes zeta_{X_p}(s) for all primes p < N in time N (log N)^(3+o(1)). These generalise previous results of the author from hyperelliptic curves to completely arbitrary varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.