Abstract

Two words are k-binomially equivalent whenever they share the same subwords, i.e., subsequences, of length at most k with the same multiplicities. This is a refinement of both the abelian equivalence and the Simon congruence. The k-binomial complexity of an infinite word x maps the integer n to the number of classes in the quotient, by this k-binomial equivalence relation, of the set of factors of length n occurring in x. This complexity measure has not been investigated very much. In this paper, we characterize the k-binomial complexity of the Thue–Morse word. The result is striking, compared to more familiar complexity functions. Although the Thue–Morse word is aperiodic, its k-binomial complexity eventually takes only two values. In this paper, we first express the number of occurrences of subwords appearing in iterates of the form Ψℓ(w) for an arbitrary morphism Ψ. We also thoroughly describe the factors of the Thue–Morse word by introducing a relevant new equivalence relation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.