Abstract

A main result of combinatorial optimization is that the clique and chromatic numbers of a perfect graph are computable in polynomial time (Grötschel et al., 1981) [7]. This result relies on polyhedral characterizations of perfect graphs involving the stable set polytope of the graph, a linear relaxation defined by clique constraints, and a semi-definite relaxation, the Theta-body of the graph.A natural question is whether the algorithmic results for perfect graphs can be extended to graph classes with similar polyhedral properties. We consider a superclass of perfect graphs, the a-perfect graphs, whose stable set polytope is given by constraints associated with generalized cliques. We show that for such graphs the clique number can be computed in polynomial time as well. The result strongly relies upon Fulkerson’s antiblocking theory for polyhedra and Lovász’s Theta function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.