Abstract
Multi-scale entropy (MSE) is a measurement of a system's complexity. It has received a great deal of attention in recent years, and its effectiveness has been verified, and applied in a number of different fields. However, the algorithms proposed in past studies required O (N^2), which represented a degree of execution time insufficient for on-line applications, or for applications with long term correlations. In this study, we showed that the probability function in the entropy term could be transformed into an orthogonal range search in the field of computational geometry. We then developed an efficient new algorithm for computing multi-scale entropy. The execution time in the results of our experiments with electrocardiogram (ECG), electroencephalography (EEG), interbeat interval (RR), and mechanical and ecological signals showed a significant improvement from 10 to 70 times over that of conventional methods for N=80, 000. Because the execution time has been significant reduced, the new algorithm could be applied to online diagnosis, in the computation of MSE for long-term correlation of signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.