Abstract

We consider the minimum spanning tree problem in a setting where informa- tion about the edge weights of the given graph is uncertain. Initially, for each edge e of the graph only a set Ae, called an uncertainty area, that contains the actual edge weight we is known. The algorithm can 'update' e to obtain the edge weight we 2 Ae. The task is to output the edge set of a minimum spanning tree after a minimum number of updates. An algorithm is k-update competitive if it makes at most k times as many updates as the optimum. We present a 2-update competitive algorithm if all areas Ae are open or trivial, which is the best possible among deterministic algorithms. The condition on the areas Ae is to exclude degenerate inputs for which no constant update competitive algorithm can exist. Next, we consider a setting where the vertices of the graph correspond to points in Euclidean space and the weight of an edge is equal to the distance of its endpoints. The location of each point is initially given as an uncertainty area, and an update reveals the exact location of the point. We give a general relation between the edge uncertainty and the vertex uncertainty versions of a problem and use it to derive a 4-update competitive algorithm for the minimum spanning tree problem in the vertex uncertainty model. Again, we show that this is best possible among deterministic algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.