Abstract

We present a new method for computing intersections of two parametric B-spline curves. We use an intersection of the control polygons as an approximation for an intersection of the curves in combination with knot insertion. The resulting algorithm is asymptotically Newton-like, but without the need of a starting value. Like Newton's method, it converges quadratically at transversal intersections, the analogue to simple roots. It is a generalization of an algorithm developed by two of the authors for computing zeros of spline functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.