Abstract

Partial least squares is a common technique for multivariate regression. The procedure is recursive and in each step basis vectors are computed for the explaining variables and the solution vectors. A linear model is fitted by projection onto the span of the basis vectors. The procedure is mathematically equivalent to Golub–Kahan bidiagonalization, which is a Krylov method, and which is equivalent to a pair of matrix factorizations. The vectors of regression coefficients and prediction are non-linear functions of the right hand side. An algorithm for computing the Frechet derivatives of these functions is derived, based on perturbation theory for the matrix factorizations. From the Frechet derivative of the prediction vector one can compute the number of degrees of freedom, which can be used as a stopping criterion for the recursion. A few numerical examples are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.