Abstract
The level of compaction of an intrinsically disordered protein may affect both its physical and biological properties, and can be probed via different types of biophysical experiments. Small-angle X-ray scattering (SAXS) probe the radius of gyration (Rg) whereas pulsed-field-gradient nuclear magnetic resonance (NMR) diffusion, fluorescence correlation spectroscopy, and dynamic light scattering experiments can be used to determine the hydrodynamic radius (Rh). Here we show how to calculate Rg and Rh from a computationally generated conformational ensemble of an intrinsically disordered protein. We further describe how to use a Bayesian/Maximum Entropy procedure to integrate data from SAXS and NMR diffusion experiments, so as to derive conformational ensembles in agreement with those experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.