Abstract

In most RFID localization systems, acquiring a reader antenna's position at each sampling time is challenging, especially for those antenna-carrying robot or drone systems with unpredictable trajectories. In this article, we present RF-MVO that fuses RFID and computer vision for stationary RFID localization in 3D space by attaching a light-weight 2D monocular camera to two reader antennas in parallel. First, the existing monocular visual odometry only recovers a camera/antenna trajectory in the camera view from 2D images. By combining it with RF phase, we design a model to estimate a scale factor for real-world trajectory transformation, along with spatial directions of an RFID tag relative to a virtual antenna array due to the mobility of each antenna. Then we propose a novel RFID localization algorithm that does not require exhaustively searching all possible positions within the pre-specified region. Second, to speed up the searching process and improve localization accuracy, we propose a coarse-to-fine optimization algorithm. Third, we introduce the concept of horizontal dilution of precision (HDOP) to measure the confidence level of localization results. Our experiments demonstrate the effectiveness of proposed algorithms and show RF-MVO can achieve 6.23 cm localization error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.