Abstract

Traditionally, solid–liquid mixing has always been regarded as an empirical technology with many aspects of mixing, dispersing and contacting were related to power draw. One important application of solid–liquid mixing is the preparation of brine from sodium formate. This material has been widely used as a drilling and completion fluid in challenging environments such as the Barents Sea. In this paper, large-eddy simulations of a turbulent flow in a solid–liquid baffled cylindrical mixing vessel with large number of solid particles are performed to obtain insight into the fundamental aspects of a mixing tank. The impeller-induced flow at the blade tip radius is modeled by using the dynamic-mesh Lagrangian method. The simulations are four-way coupled, which implies that both solid–liquid and solid–solid interactions are taken into account. By employing a soft particle approach the normal and tangential forces are calculated acting on a particle due to viscoelastic contacts with other neighboring particles. The results show that the granulated form of sodium formate may provide a mixture that allows faster and easier preparation of formate brine in a mixing tank. In addition it is found that exceeding a critical size for grains phenomena, such as caking, can be prevented. The obtained numerical results suggest that by choosing appropriate parameters a mixture can be produced that remains free-flowing no matter how long it is stored before use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.