Abstract

Structural properties pertaining to the solvation of mixtures of dodecytrimethylammonium/dodecylsulfate adsorbed at water/air interfaces were studied using molecular dynamics techniques. Two different surfactant coverages, both in the submonolayer regime, were considered: an infinite-diluted catanionic pair and an equimolar mixture, at a surface concentration of 78.7 A2/headgroup. The most stable solvated structures for the single surfactant pair correspond to contact-head-ion-pairs (CHIP) at a distance close to 5 A. In addition, marginally stable solvent-separated-head-ion-pairs (SSHIP) at distances approximately 7 A were also observed. The mean free energy for the dissociation of CHIP was estimated to be approximately 1 kcal/mol. At finite surfactant concentrations, one observes a considerable degree of clustering between the amphiphiles, due to the strong Coulomb coupling between headgroups. The resulting spatial domains show asymmetric structures with linear dimensions comparable to the simulation box, suggesting the onset of percolative structures. The connectivity pattern of these domains was interpreted in terms of a simplified model consisting of two-dimensional charged Lennard-Jones spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.