Abstract

Silicon strip detectors to be used edge-on for imaging in a scanned slit geometry have been simulated. A software program was developed which can simulate the motion of free charges in the bulk detector and calculate the signals they induce on the electrodes. The purpose was to quantify the impact of charge sharing on system detective quantum efficiency (DQE). The energy spectrum that was used in this study is typical for mammography. The detectors are working in single photon counting mode and the optimal threshold level to discriminate noise from useful signals has been calculated. The loss in detective quantum efficiency due to charge sharing was found to be around 5% for a 100 /spl mu/m pitched detector. Coincidence circuits can be included in the electronics to eliminate this problem. Furthermore, it is described how the relationship between charge collection efficiency and photon interaction position in the detector can be measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.