Abstract

Computer simulation of low‐frequency electromagnetic (EM) digital data acquisition in the presence of natural field noise demonstrates several important limitations and considerations. Without a remote reference noise removal scheme, it is difficult to obtain an adequate ratio of signal to noise below 0.1 Hz for frequency‐domain processing and below 0.3 Hz base frequency for time‐domain processing for a typical source‐receiver configuration. A digital high‐pass filter substantially facilitates rejection of natural field noise above these frequencies; however, at lower frequencies where much longer stacking times are required, it becomes ineffective. Use of a remote reference to subtract natural field noise extends these low‐frequency limits by one decade, but the remote reference technique is limited by the resolution and dynamic range of the instrumentation. Gathering data in short segments so that natural field drift can be offset for each segment allows a higher gain setting to minimize dynamic range problems. The analysis is also applicable to the induced polarization technique in which similar problems arise at low frequencies in the presence of telluric noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.