Abstract

Neurofibromin regulates cell motility via three distinct GTPase pathways acting through two different domains, the Ras GTPase-activating protein-related domain (GRD) and the pre-GRD domain. First, the GRD domain inhibits Ras-dependent changes in cell motility through the mitogen activated protein cascade. Second, it also regulates Rho-dependent (Ras-independent) changes by activating LIM kinase 2 (LIMK2), an enzyme that phosphorylates and inactivates cofilin (an actin-depolymerizing factor). Third, the pre-GRD domain acts through the Rac1 GTPase, that activate the P21 activated kinase 1 (PAK1)-LIMK1-cofilin pathway. We employed molecular modeling to identify a novel inhibitor of LIMK1/2. The active sites of an ephrin-A receptor (EphA3) and LIMK2 showed marked similarity (60%). On testing a known inhibitor of EphA3, we found that it fits to the LIMK1/2-ATP binding site and to the latter's substrate-binding pockets. We identified a similar compound, T56-LIMKi, and found that it inhibits LIMK1/2 kinase activities. It blocked the phosphorylation of cofilin which led to actin severance and inhibition of tumor cell migration, tumor cell growth, and anchorage-independent colony formation in soft agar. Because modulation of LIMK by neurofibromin is not affected by the Ras inhibitor Salirasib, we examined the combined effect of Salirasib and T56-LIMKi each of which can affect cell motility by a distinct pathway. We found that their combined action on cell proliferation and stress-fiber formation in neurofibromin-deficient cells was synergistic. We suggest that this drug combination may be developed for treatment of neurofibromatosis and cancer.

Highlights

  • The actin-depolymerizing factor (ADF)/ cofilin family of proteins plays a prominent role in promoting actin depolymerization [1, 2]

  • We wanted to design an inhibitor of LIM kinase 2 (LIMK2) that is controlled by the best characterized NF1 domain, the GTPase-activating protein-related domain (GRD), which inhibits the Rho-ROCK-LIMK2- cofilin pathway

  • The second pathway is regulated by the GRD domain, not through classic Ras downstream effectors but rather via the Rho-ROCK-LIMK2-cofilin pathway [2]

Read more

Summary

Introduction

The actin-depolymerizing factor (ADF)/ cofilin family of proteins plays a prominent role in promoting actin depolymerization [1, 2]. Cofilin is phosphorylated mainly by LIMK1 and LIMK2[3,4,5]. The unphosphorylated, active cofilin induces severing of actin filaments and participates in numerous cellular functions, such as cell migration, cell cycle processes, and neuronal differentiation[6, 7]. In its phosphorylated state cofilin is inactive and does not affect the cell cytoskeleton. Hyperphosphorylation of cofilin typically occurs in many human diseases and pathological conditions, such as cancer cell invasion and metastasis[8], www.impactjournals.com/oncotarget. LIMKs are important targets in drug development because their inhibition will induce an increase in the levels of the unphosphorylated active cofilin

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.