Abstract
Deep learning for the analysis of H&E stains requires a large annotated training set. This may form a labor-intensive task involving highly skilled pathologists. We aimed to optimize and evaluate computer-assisted annotation based on digital dual stains of the same tissue section. H&E stains of primary and metastatic melanoma (N = 77) were digitized, re-stained with SOX10, and re-scanned. Because images were aligned, annotations of SOX10 image analysis were directly transferred to H&E stains of the training set. Based on 1,221,367 annotated nuclei, a convolutional neural network for calculating tumor burden (CNNTB) was developed. For primary melanomas, precision of annotation was 100% (95%CI, 99% to 100%) for tumor cells and 99% (95%CI, 98% to 100%) for normal cells. Due to low or missing tumor-cell SOX10 positivity, precision for normal cells was markedly reduced in lymph-node and organ metastases compared with primary melanomas (p < 0.001). Compared with stereological counts within skin lesions, mean difference in tumor burden was 6% (95%CI, -1% to 13%, p = 0.10) for CNNTB and 16% (95%CI, 4% to 28%, p = 0.02) for pathologists. Conclusively, the technique produced a large annotated H&E training set with high quality within a reasonable timeframe for primary melanomas and subcutaneous metastases. For these lesion types, the training set generated a high-performing CNNTB, which was superior to the routine assessments of pathologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.