Abstract

This paper presents a computer-aided insight into the receptor-ligand interaction for novel analogs of the lead structure 5-(4-fluorophenyl)-3-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-5-methylimidazolidine-2,4-dione (1, MF-8), as part of the search for potent and selective serotonin 5-HT7 receptor (5-HT7R) agents. New hydantoin derivatives (4-19) were designed and synthesized. For 5-phenyl-3-(2-hydroxy-3-(4-(2-ethoxyphenyl)piperazin-1-yl)propyl)-5-methylimidazolidine-2,4-dione (4), its crystal structure was determined experimentally. Molecular modeling studies were performed, including both pharmacophore and structure-based approaches. New compounds were investigated in radioligand binding assays (RBA) for their affinity toward 5-HT7R and selectivity over 5-HT1AR, dopamine D2R and α1-, α2-and β-adrenoceptors. Selected compounds (5-8) were assessed for their antidepressant and anxiolytic effects in vivo in mice. Most of the tested compounds displayed potent affinity and selectivity for 5-HT7R in RBA, in particular seven compounds (4, 5, 7, 8 and 10-12,Ki ≤ 10 nM). Antidepressant-like activity in vivo for all tested compounds (5-8) was confirmed. SAR analysis based on both crystallography-supported molecular modeling and RBA results indicated that mono-phenyl substituents at both hydantoin and piperazine are more favorable for 5-HT7R affinity than the di-phenyl ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.