Abstract
Mammography is considered the most effective method for early detection of breast cancers. However, it is difficult for radiologists to detect microcalcification clusters. Therefore, we have developed a computerized scheme for detecting early-stage microcalcification clusters in mammograms. We first developed a novel filter bank based on the concept of the Hessian matrix for classifying nodular structures and linear structures. The mammogram images were decomposed into several subimages for second difference at scales from 1 to 4 by this filter bank. The subimages for the nodular component (NC) and the subimages for the nodular and linear component (NLC) were then obtained from analysis of the Hessian matrix. Many regions of interest (ROIs) were selected from the mammogram image. In each ROI, eight features were determined from the subimages for NC at scales from 1 to 4 and the subimages for NLC at scales from 1 to 4. The Bayes discriminant function was employed for distinguishing among abnormal ROIs with a microcalcification cluster and two different types of normal ROIs without a microcalcification cluster. We evaluated the detection performance by using 600 mammograms. Our computerized scheme was shown to have the potential to detect microcalcification clusters with a clinically acceptable sensitivity and low false positives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.