Abstract

Extrusion is one of the widely used metal forming processes. The extrusion process is carried out conventionally using a shear faced die, but shear faced dies have many practical problems such as a dead metal zone, more redundant work, breaking of whiskers and above all the design of a shear die is done based on experience. To eliminate the above problems, a new approach of designing the die known as a streamlined die is tried here. The streamlined extrusion die is designed based on the principle of constant area reduction over the length of the die. In this, a uniform flow of metal is ensured from the surface to the core and this can be a more scientific approach of die design. Many methods are available in the literature to design the streamlined extrusion die such as cubic polynomial curves, the area mapping technique, the line-mapping technique and the use of a genetic algorithm. For solving the problem of die design Stokes’ theorem is suggested, but a new approach of transforming the peripheral point on the surface of a cylinder to the corresponding point on the extruded square is obtained by an analytical method. An attempt is made to identify an analytical solution for designing a streamlined extrusion die for a square cross-section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.