Abstract
Summary Fracturing-fluid invasion into the rock matrix can generate water block that potentially reduces hydrocarbon production, especially in low-permeability reservoirs. Here, we experimentally investigate the dynamics of water block under different flow scenarios (i.e., without shut-ins) and rock permeabilities through multiple coreflood experiments. A computed-tomography (CT) scanner is used to obtain the saturation profile within the core throughout the experiment, while the overall hydrocarbon productivity is measured from the overall pressure drop across the core. On the basis of the saturation and pressure measurements, we interpret the potential physical mechanism regarding the productivity reduction from water block and its self-mitigation facilitated by the capillary imbibition. Our interpretation also matches the observed scaling with rock permeability and the optimal shut-in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.