Abstract

The mixed-Eulerian–Lagrangian method using high-order boundary elements, described in Xue et al. (2001) for the simulation of fully nonlinear three-dimensional wave–wave and wave–body interactions, is here extended and applied to the study of two nonlinear three-dimensional wave–body problems: (a) the development of bow waves on an advancing ship; and (b) the steep wave diffraction and nonlinear high-harmonic loads on a surface-piercing vertical cylinder. For (a), we obtain convergent steady-state bow wave profiles for a flared wedge, and the Wigley and Series 60 hulls. We compare our predictions with experimental measurements and find good agreement. It is shown that upstream influence, typically not accounted for in quasi-two-dimensional theory, plays an important role in bow wave prediction even for fine bows. For (b), the primary interest is in the higher-harmonic ‘ringing’ excitations observed and quantified in experiments. From simulations, we obtain fully nonlinear steady-state force histories on the cylinder in incident Stokes waves. Fourier analysis of such histories provides accurate predictions of harmonic loads for which excellent comparisons to experiments are obtained even at third order. This confirms that ‘ringing’ excitations are directly a result of nonlinear wave diffraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.