Abstract

Many numerical algorithms involve computations in Lie algebras, like composition and splitting methods, methods involving the Baker–Campbell–Hausdorff formula and the recently developed Lie group methods for integration of differential equations on manifolds. This paper is concerned with complexity and optimization of such computations in the general case where the Lie algebra is free , i.e. no specific assumptions are made about its structure. It is shown how transformations applied to the original variables of a problem yield elements of a graded free Lie algebra whose homogeneous subspaces are of much smaller dimension than the original ungraded one. This can lead to substantial reduction of the number of commutator computations. Witt's formula for counting commutators in a free Lie algebra is generalized to the case of a general grading. This provides good bounds on the complexity. The interplay between symbolic and numerical computations is also discussed, exemplified by the new MATLAB toolbox ‘DIFFMAN’

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.