Abstract
Traditional drug discovery is based on a binding affinity (thermodynamics)-driven paradigm. Numerous examples, however, demonstrated that drug efficacy does not always depend only on binding affinity but positively correlates with binding kinetics, that is, the dissociation rate constant (koff). Binding free energy landscape (BFEL) constructor is a computational binding kinetics prediction method, previously developed by us, that estimates the binding kinetics for ligand-protein based on their constructed binding free energy landscape, but it also reveals the detailed molecular mechanism of the binding event, hence, providing the position of transition states at the molecular level to modify/improve the binding kinetics. Acetylcholinesterase (AChE) is a well-known Alzheimer's disease (AD) target for which there is still not an ideal drug on the market. Therefore, to improve the drug design strategy for AD, the binding kinetics and binding molecular mechanisms of the four inhibitors of AChE, that is, E2020 (Aricept), HupA, Rivastigmine, and Galantamine, were studied. Also, the differentiation of the binding kinetics between mAChE and TcAChE was studied to evaluate the sensitiveness of BFEL constructor. The flexibility of molecules has a noticeable effect on the nature of BFEL. To the same target, flexible molecules (i.e., E2020 and Rivastigmine) which contain more rotatable bonds tend to have more complicated BFELs reflecting more complicated molecular action mechanisms than the rigid ones (i.e., HupA and Galantamine), which therefore could be more challenging to be optimized. The binding kinetics is highly dependent on the structure of the molecules, such as the length and the functional groups. Therefore, E2020 presents better binding kinetic and thermodynamic properties with either TcAChE or mAChE. Therefore, it is the most promising lead drug for binding kinetics-based drug design. In addition, the binding kinetics of a drug may present different values in the proteins of different organisms because the residue compositions of the binding gorges of the targets are variant, that is, E2020 shows lower binding affinity and association energy barrier in binding with mAChE than TcAChE. However, HupA presents a better binding property with TcAChE than mAChE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.