Abstract

This article reports a computationally efficient optimization for wavy surface roughness in cooling channels based on simulated annealing. Our approach rapidly calculates the performance metrics of cooling channels using closed-form models and approximates an optimum design via a random optimization technique, simulated annealing. The proposed method optimizes the wall roughness of cooling channels for maximizing the heat transfer rate while satisfying the pressure drop constraint. The channel wall smoothly converges and diverges throughout to locally modulate the heat transfer rate and the pressure drop. For a given pressure constraint and heat load distribution, the optimizer is able to compare more than 10,000 possible channel designs within a minute and generate a distinct channel design that achieves the optimization objective. The channel temperature predicted by the optimizer differs up to 10.9% to the estimations by a finite volume model. Lastly, optimized wavy channel designs are introduced that exhibit up to 2.7 times greater performance factor than a conventional channel geometry. This work demonstrates the potential of algorithm-based optimization techniques for designing efficient thermodynamic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.