Abstract

Computational design of molecular homogeneous organometallic catalysts followed by experimental realization remains a significant challenge. Here, we report the development and use of a density functional theory transition-state model that provided quantitative prediction of molecular Cr catalysts for controllable selective ethylene trimerization and tetramerization. This computational model identified a general class of phosphine monocyclic imine (P,N)-ligand Cr catalysts where changes in the ligand structure control 1-hexene versus 1-octene selectivity. Experimental ligand and catalyst synthesis as well as reaction testing quantitatively confirmed predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.