Abstract

The microscale hydrodynamics of bubbles generated by aeration is directly related to the oxygen transfer efficiency and the overall performance of the activated sludge wastewater treatment process. To gain a deeper insight on the microscale phenomena of dispersed bubble occurring in this process, a three-dimensional direct simulation method is developed to study the effects of the liquid cross-flow on microscale behavior of bubble generation in a plug-flow aeration tank. The numerical simulations are performed using the level set method coupling with the governing equations of a single fluid with variable properties. The governing equations are solved using the finite-volume technique. The simulation results are validated through comparison with experimental observations. The study indicates that the liquid cross-flow has a strong impact on the bubble generation. Compared to that generated under quiescent liquid conditions, the bubble under liquid cross-flow conditions grows downstream along the tilted axis. The bubble generation time tends to decrease noticeably and the bubble at detachment has significantly smaller size. The bubble size and generation time also increase with the increase of gas velocity. The relation of such results to the oxygen transfer efficiency of the wastewater treatment process is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.