Abstract

In the recent past, experimental studies have shown some advantages of blade lean and sweep in axial compressors. As most of the experimental results are combined with other features, it is difficult to determine the effect of individual parameters on the performance of the compressor. The present numerical studies are aimed at understanding the performance and three-dimensional flow pattern within and at the exit of swept and unswept rotors. Three rotors, namely, unswept, 20° forward swept, and 20° backward swept rotors, are analysed with a specific intention of understanding the three-dimensional flow pattern within the rotors and also the pattern of the blade boundary layer flow. The analysis was done using a fully three-dimensional viscous CFD code CFX-5. Results indicated a reduction in pressure rise with sweep. Backward sweep adversely affects the stall margin. Forward sweep changes the streamline pattern in such a way that the suction surface streamlines are deflected towards the hub and the pressure surface streamlines are deflected towards the casing. An opposite behaviour is observed in the backward swept rotors. High axial velocities reduce the secondary losses near the hub, resulting in a high pressure rise in forward swept rotor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.