Abstract

PurposeThe purpose of this paper is to consider the conjugate heat transfer from a flat plate involving a turbulent plane wall jet. The bottom wall of the solid block is heated by a constant heat flux.Design/methodology/approachHigh Reynolds number two‐equation model (κ‐ϵ) has been used for turbulence modeling. The parameters considered are the conductivity ratio of solid and fluid, the solid slab thickness and the Prandtl number. The Reynolds number considered is 15,000 because the flow becomes fully turbulent and then is independent of the Reynolds number. The range of parameters considered are: conductivity ratio = 1‐1,000, solid slab thickness = 1‐10 and Prandtl number = 0.01‐100.FindingsThe non‐dimensional bottom surface temperature is high for high‐Prandtl number fluid and vice versa. As conductivity ratio increases, it decreases whereas it increases with the increase in slab thickness. Similar trend is observed for the distribution of the interface temperature. The Nusselt number computed based on the interface temperature increases with Prandtl number. It is observed that for the range of parameters considered, local Nusselt number distribution superimposes with each other. The average heat flux at the interface has been computed and found to be equal with average heat flux at the bottom which ensures the overall heat balance.Originality/valueThe study of conjugate heat transfer with a turbulent wall jet will be useful for cooling of heated body.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.