Abstract

Recently the authors have derived various new types of path independent integrals in which the theoretical limitations of the so-calledJ integral are overcome. First, for elastodynamic crack problems, a path independent integralJ′ which has the physical meaning of energy release rate was derived. Later, more general forms of path independent integralsT * andT were derived, which are valid for any constitutive relation under quasi-static as well as dynamic conditions. This paper presents the theoretical and computational aspects of these integrals, of relevance in non-linear dynamic fracture mechanics. An efficient solution technique is also presented for non-linear dynamic finite element method in which a factorization of the assembled stiffness matrix is done only once throughout the computation for a given mesh pattern. Finite element analyses were carried out for an example problem of a center-cracked plate subject to a uniaxial impact loading. The material behavior was modeled by three different constitutive relations such as linear-elastic, elastic-plastic, elastic-viscoplastic cases. The applicability of theT * integral to non-linear dynamic fracture mechanics was shown with the numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.