Abstract
The added technological potential of bimetallic clusters and nanoparticles, as compared to their pure (i.e., one-component) counterparts, stems from the ability to further fine-tune their properties and, consequently, functionalities through a simultaneous use of the "knobs" of size and composition. The practical realization of this potential can be greatly advanced by the knowledge of the correlations and relationships between the various characteristics of bimetallic nanosystems on the one hand and those of their pure counterparts as well as pure constituent components on the other hand. Here, we present results of a density functional theory based study of pure Ptn and Mon clusters aimed at revisiting and exploring further their structural, electronic, and energetic properties. These are then used as a basis for analysis and characterization of the results of calculations on two-component Ptn-mMom clusters. The analysis also includes establishing relationships between the properties of the Ptn-mMom clusters and those of their Ptn-m and Mom components. One of the particularly intriguing findings suggested by the calculated data is a linear dependence of the average binding energy per atom in sets of Ptn-mMom clusters that have the same fixed number m of Mo atoms and different number n-m of Pt atoms on the fractional content (n-m)/n of Pt atoms. We derive an analytical model that establishes the fundamental basis for this linearity and expresses its parameters-the m-dependent slope and intercept-in terms of characteristic properties of the constituent components, such as the average binding energy per atom of Mom and the average per-atom adsorption energy of the Pt atoms on Mom. The conditions of validity and degree of robustness of this model and of the linear relationship predicted by it are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.