Abstract

The human CD1d protein presents a wide range of lipids to the TCR of invariant natural killer T cells (iNKT). Alpha-GalCer is one of the most potent iNKT stimulatory ligands presented by CD1d. The lipid portion of this ligand has been extensively investigated over the course of the past few years; however, the sugar portion of the ligand has received minimal attention. The following research focuses on computationally analyzing the recently crystallized CD1d/alpha-GalCer/TCR tertiary complex by molecular dynamics simulations using AMBER along with studying the structure activity relationship of the sugar headgroup also by simulation and docking using Autodock for a variety of alpha-GalCer analogs. The results show that the crystal structure is stable under simulation making it an accurate representation of the CD1d/alpha-GalCer/TCR complex and that modifications to the C2' and C3' positions of the sugar are not tolerated by the tertiary complex, whereas modifications to the C4' position are tolerated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.