Abstract
The present study explores the efficacy of plant-derived natural products (PDNPs) against spike glycoproteins (S-glycoprotein) of SARS-CoV-2 variants using molecular docking, ADMET, molecular dynamics (MD) simulation and density-functional theory (DFT) analysis. In all, 100 PDNPs were screened against spike glycoprotein of SARS-CoV-2 variants, namely alpha (B.1.1.17), beta (B.1.351), delta (B.1.617), gamma (P.1) and omicron (B.1.1.529). Results showed that rutin, EGCG, hesperidin, withanolide G, rosmarinic acid, diosmetin, myricetin, epicatechin and quercetin were the top hit compounds against each of the SARS-CoV-2 variants. The most active compounds, rutin, hesperidin, EGCG and rosmarinic acid gave binding scores of −10.2, −8.1, −8.9, −8.3 and −9.2 kcal/mol, against omicron, delta, alpha, beta and gamma variants, respectively. Further, the stability of docked complexes was confirmed by the analysis of molecular descriptors (RMSD, RMSF, SASA, Rg and H-bonds) in molecular dynamic simulation analysis. Moreover, the physiochemical properties and drug-likeness of the tested compounds showed that they have no toxicity or carcinogenicity and may be used as druggable targets. In addition, the DFT study revealed the higher activity of the tested compounds against the target proteins. This led us to conclude that rutin, hesperidin, EGCG and rosmarinic acid are good candidates to target the S-glycoproteins of SARS-CoV-2 variants. Further, in vivo and clinical studies needed to develop them as drug leads against existing or new SARS-CoV-2 variants are currently underway in our laboratory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.