Abstract

BackgroundRecent experimental and computational studies have provided overwhelming evidence for a plethora of diverse transcripts that are unrelated to protein-coding genes. One subclass consists of those RNAs that require distinctive secondary structure motifs to exert their biological function and hence exhibit distinctive patterns of sequence conservation characteristic for positive selection on RNA secondary structure.The deep-sequencing of 12 drosophilid species coordinated by the NHGRI provides an ideal data set of comparative computational approaches to determine those genomic loci that code for evolutionarily conserved RNA motifs. This class of loci includes the majority of the known small ncRNAs as well as structured RNA motifs in mRNAs. We report here on a genome-wide survey using RNAz.ResultsWe obtain 16 000 high quality predictions among which we recover the majority of the known ncRNAs. Taking a pessimistically estimated false discovery rate of 40% into account, this implies that at least some ten thousand loci in the Drosophila genome show the hallmarks of stabilizing selection action of RNA structure, and hence are most likely functional at the RNA level. A subset of RNAz predictions overlapping with TRF1 and BRF binding sites [Isogai et al., EMBO J. 26: 79–89 (2007)], which are plausible candidates of Pol III transcripts, have been studied in more detail. Among these sequences we identify several "clusters" of ncRNA candidates with striking structural similarities.ConclusionThe statistical evaluation of the RNAz predictions in comparison with a similar analysis of vertebrate genomes [Washietl et al., Nat. Biotech. 23: 1383–1390 (2005)] shows that qualitatively similar fractions of structured RNAs are found in introns, UTRs, and intergenic regions. The intergenic RNA structures, however, are concentrated much more closely around known protein-coding loci, suggesting that flies have significantly smaller complement of independent structured ncRNAs compared to mammals.

Highlights

  • Recent experimental and computational studies have provided overwhelming evidence for a plethora of diverse transcripts that are unrelated to protein-coding genes

  • Biotech. 23: 1383–1390 (2005)] shows that qualitatively similar fractions of structured RNAs are found in introns, UTRs, and intergenic regions

  • We report here on a computational screen for structured RNA motifs in Drosophilids based on 12-species Pecan alignments provided by the Consortium

Read more

Summary

Introduction

Recent experimental and computational studies have provided overwhelming evidence for a plethora of diverse transcripts that are unrelated to protein-coding genes. The deep-sequencing of 12 drosophilid species coordinated by the NHGRI provides an ideal data set of comparative computational approaches to determine those genomic loci that code for evolutionarily conserved RNA motifs This class of loci includes the majority of the known small ncRNAs as well as structured RNA motifs in mRNAs. We report here on a genome-wide survey using RNAz. High-throughput transcriptome data obtained in particular using tiling arrays [1,2,3,4,5,6] and cDNA sequencing [7,8,9] in conjunction with detailed functional studies of individual genes have profoundly changed our picture of eukaryotic gene regulation by emphasizing multiple regulatory layers, many of which involve non-protein-coding RNAs (ncRNAs). As part of the detailed analysis of the ENCODE regions [22], the verification of many unannotated RNAz predictions by means of RT-PCR has been reported, and for a substantial fraction of RNAz predictions corroborating evidence from high-throughput experiments has been obtained

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.