Abstract

Over the past decades a considerable research effort has been attributed to the modelling of chloride ingress into reinforced concrete in order to predict its durability. Traditional models are based on the error-function. In the present paper computational results of an advanced model are presented, which takes environmental temperature and humidity fluctuations, chloride binding, diffusion and convection, as well as carbonation effects into account. These qualifications make the model particularly suitable for simulating drying-wetting cycles, an example of which is included. The good performance of the moisture sub-model is demonstrated in an example concerning drying cement paste. Another example deals with a simple submersion case. The examples are based on laboratory and real-life experiments with documented concrete or paste compositions and environmental conditions, as well as the eventual measured chloride profiles. In general, the computational results are in good agreement with the measurements. The paper concludes with a comparison between simulation results of the present model and the error-function model for the case of cyclic drying-wetting exposure. It appeared that the implicit negligence of the moisture fluctuations by the error-function model, forced that model to deploy strongly deviating material characteristics to reach agreement with the measured chloride profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.