Abstract

The emerging research field of so-called computational psychiatry attempts to contribute to an understanding of complex psychiatric phenomena by applying computational methods and to promote the translation of neuroscientific research results into clinical practice. This article presents this field of research using selected examples based on the distinction between data-driven and theory-driven approaches. Exemplary for adata-driven approach are studies to predict clinical outcome, for example, in persons with a high-risk state for psychosis or on the response to pharmacological treatment for depression. Theory-driven approaches attempt to describe the mechanisms of altered information processing as the cause of psychiatric symptoms at the behavioral and neuronal level. In computational models possible mechanisms can be described that may have produced the measured behavioral or neuronal data. For example, in schizophrenia patients the clinical phenomenon of aberrant salience has been described as learning irrelevant information or cognitive deficits have been linked to connectivity changes in frontoparietal networks. Computational psychiatry can make important contributions to the prediction of individual clinical courses as well as to amechanistic understanding of psychiatric symptoms. For this afurther development of reliable and valid methods across different disciplines is indispensable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.