Abstract

Elemental carbon has been successfully used to tune the light emission properties of zinc oxide (ZnO) through artificially doping but the underlying mechanism remains controversial. At present, carbon-related defect complexes are the main explanation. Nevertheless, the possibility of forming semiconducting Zn-C compounds has not been discussed. In this study, we reveal the existence of various stable semiconducting Zn-C compounds. Based on particle swarm optimization and first-principles calculations, we perform a structural search of Zn-C binary compounds and report four stable semiconducting structures, in which the covalent Zn-C bonding characteristics are stronger compared with that in the metal rocksalt zinc carbide (ZnC). Crucially, three of the four Zn-C compounds have direct or quasi-direct band gaps in the range of 1.09–2.94 eV which are energies highly desirable for optoelectronic applications. Electronic transitions across the band gaps of these Zn-C structures could contribute to blue and near-infrared light emissions of C-doped ZnO. Our results have not only unraveled a new perspective to explain and tailor the light emission properties of ZnO but also provide a deeper understanding of possible Zn-C compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.