Abstract
The discovery of new magnetic materials is a big challenge in the field of modern materials science. We report the development of a new extension of the evolutionary algorithm USPEX, enabling the search for half-metals (materials that are metallic only in one spin channel) and hard magnetic materials. First, we enabled the simultaneous optimization of stoichiometries, crystal structures, and magnetic structures of stable phases. Second, we developed a new fitness function for half-metallic materials that can be used for predicting half-metals through an evolutionary algorithm. We used this extended technique to predict new, potentially hard magnets and rediscover known half-metals. In total, we report five promising hard magnets with high energy product (|BH|MAX), anisotropy field (Ha), and magnetic hardness (κ) and a few half-metal phases in the Cr-O system. A comparison of our predictions with experimental results, including the synthesis of a newly predicted antiferromagnetic material (WMnB2), shows the robustness of our technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.