Abstract

From the first quasicrystal discovered in the laboratory 30 years ago to the only known specimen of naturally occurring quasicrystals, quasicrystals with icosahedral symmetry have received great attention. There are more than one hundred stable icosahedral quasicrystals in metallic alloys; all are identified by their diffraction spectra. Despite this abundance, resolving the positions of the atoms within the solid has been possible only indirectly. Moreover, unlike dodecagonal and other axial quasicrystals, icosahedral quasicrystals have been observed neither in simulations nor in non-atomic (e.g. micellar or colloidal) systems, where real-space information would be available. Here we present an icosahedral quasicrystal discovered in computer simulation via self-assembly from the liquid phase. We provide a structure model by analyzing atomic surfaces and report the presence of phason flips. Our results constitute a direct microscopic confirmation of the higher-dimensional crystallographic description of icosahedral quasicrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.