Abstract

A high-level calculation of 1 H and 13 C NMR chemical shifts of α- and β-d-glucopyranoses is carried out at the DFT level with taking into account their conformational composition to reveal the most effective computational protocols. A number of dedicated DFT functionals in combination with Jensen's pcS-n (n = 0-4) family of basis sets were applied to evaluate the most reliable combination. It was found that BHandHLYP/pcS-2 provided the most accurate and reliable computational protocol. Based on the performed calculations, the established computational protocol is generally recommended for the calculation of 1 H and 13 C NMR chemical shifts of a wide series of carbohydrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.