Abstract

AbstractThe paper describes a 2‐dimensional computational model for simulation of the surface initiated fatigue crack growth in the contact area of gear teeth flanks that leads to surface pitting. The discretized model of a gear tooth with the assumed initial crack is subjected to normal contact pressure, which takes into account the EHD‐lubrication conditions and tangential loading due to friction between gear teeth flanks. The model accounts also for the influence of a fluid driven into the crack by hydraulic mechanism on crack propagation. The J‐integral method in the framework of the finite element analysis is used for simulation of the fatigue crack propagation from the initial to the critical crack length, when the surface material layer breaks away and pit appears on the surface. The model is applied to a real pitting problem of a gear and corresponding computational results in terms of pit sizes correlate well to the development of micropits observed in experimental testing. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.