Abstract

(1) Background: in patients with neurodegenerative diseases, noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists provide neuroprotective advantages. We performed memantine therapy and proved mathematical and computer modeling of neurodegenerative disease in this study. (2) Methods: a computer simulation environment of the N-methyl-D-aspartate receptor incorporating biological mechanisms of channel activation by high extracellular glutamic acid concentration. In comparison to controls, pathological models were essentially treated with doses of memantine 3–30 µM. (3) Results: the mean values and 95% CI for Shannon entropy in Alzheimer’s disease (AD) and memantine treatment models were 1.760 (95% CI, 1.704–1.818) vs. 2.385 (95% CI, 2.280–2.490). The Shannon entropy was significantly higher in the memantine treatment model relative to AD model (p = 0.0162). The mean values and 95% CI for the positive Lyapunov exponent in AD and memantine treatment models were 0.125 (95% CI, NE–NE) vs. 0.058 (95% CI, 0.044–0.073). The positive Lyapunov exponent was significantly higher in the AD model relative to the memantine treatment model (p = 0.0091). The mean values and 95% CI for transfer entropy in AD and memantine treatment models were 0.081 (95% CI, 0.048–0.114) vs. 0.040 (95% CI, 0.019–0.062). The transfer entropy was significantly higher in the AD model relative to the memantine treatment model (p = 0.0146). A correlation analysis showed positive and statistically significant correlations of the memantine concentrations and the positive Lyapunov exponent (correlation coefficient R = 0.87, p = 0.0023) and transfer entropy (TE) (correlation coefficient R = 0.99, p < 0.000001). (4) Conclusions: information theory results of simulation studies show that the NMDA antagonist, memantine, causes neuroprotective benefits in patients with AD. Our simulation study opens up remarkable new scenarios in which a medical product, drug, or device, can be developed and tested for efficacy based on parameters of information theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.