Abstract

Piezochromic materials, whose luminescence responds to external pressure, have recently garnered much experimental attention. Computational modeling of piezochromism is of high theoretical interest, yet currently lacking. Herein, we present a computational effort to predict the piezochromism for a selection of molecular crystals. The current methodology employs a combination of dispersion-corrected solid-state and gas-phase density-functional theory and Becke's virial exciton model. Our study finds that piezochromism is primarily driven by the modification of intermolecular interactions within the molecular crystal and can be understood from the perspectives of changing polarizability or bandgaps upon the application of mechanical pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.