Abstract

In the current work, a computational model of a microfluidic fuel cell with flow-through porous electrodes is developed and validated with experimental data based on vanadium redox electrolyte as fuel and oxidant. The model is the first of its kind for this innovative fuel cell design. The coupled problem of fluid flow, mass transport and electrochemical kinetics is solved from first principles using a commercial multiphysics code. The performance characteristics of the fuel cell based on polarization curves, single pass efficiency, fuel utilization and power density are predicted and theoretical maxima are established. Fuel and oxidant flow rate and its effect on cell performance is considered and an optimal operating point with respect to both efficiency and power output is identified for a given flow rate. The results help elucidate the interplay of kinetics and mass transport effects in influencing porous electrode polarization characteristics. The performance and electrode polarization at the mass transfer limit are also detailed. The results form a basis for determining parameter variations and design modifications to improve performance and fuel utilization. The validated model is expected to become a useful design tool for development and optimization of fuel cells and electrochemical sensors incorporating microfluidic flow-through porous electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.