Abstract

Cell adhesion is a coordinated dynamic process that regulates cellular functions, such as cell proliferation, migration, differentiation, embryonic morphogenesis, and disease progression. In this paper, a discrete mechanical model for cell adhesion to a substrate is established to study the effect of substrate stiffness on cell spreading. The stiffness of the adhesion substrates can be tuned by adjusting the maximum adhesive forces balanced by substrates. The model provides reliable and reasonable predictions of cellular morphology during cell spreading on various substrates, as well as the subcellular stress distribution at focal adhesion sites. The model opens the possibility of investigating cell mechanical behaviors and cell functions at the subcellular level and further facilitates experimental studies where cell mechanics plays an important role in disease states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.