Abstract
A continuum model was proposed to study cell spreading on a flat substrate mediated by specific interaction, long-range recruiting interaction, and the diffusion of binders. Specific interactions between the mobile receptors embedded in the cell membrane and ligands coated on the substrate surface result in cell adhesion to the substrate surface. This receptor-ligand interaction was described by a chemical reaction equation. Long-range recruiting interactions between the receptors and the substrate were simplified by a traction-separation law. The governing equations and boundary conditions were formulated for the entire process of cell spreading and solved using a finite element scheme. Parametric studies were conducted to investigate the effect of system parameters on the cell spreading kinetics. It is shown that kinetic factors play an important role in cell adhesion and three regimes, that is, the binder reaction limited regime, long-range recruiting force-driven binder recruitment limited regime, and the concentration gradient-driven diffusion limited regime, were identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.