Abstract

Dynamic gas–liquid mass transfer behaviors are widely encountered in the chemical, environmental, and engineering fields. Referring to the Singhal full cavitation model, Henry's law, and Zhou's experiments, we innovatively developed a computational model for dissolved and released mass-transfer to revolutionize the independent unidirectional gas-to-liquid or liquid-to-gas theory. From a new perspective, coupled dissolution and evolution mechanisms were defined similar to how condensation and evaporation were redefined, where dissolution and release mass-transfer prediction methods that can be applied to three-dimensional calculations were integrated for the first time. The dissolved gas saturation concentration was the criterion for determining the direction of mass transfer. According to the theoretical derivation, the driving forces behind the dissolution and evolution are the remaining undissolved gas and real-time solution concentration, respectively. We confirmed the validity of the proposed dynamic model using an unsteady simulation after a grid independence study and an experimental verification of dissolved oxygen concentration in plug-discharge flow. The difference in dissolved oxygen concentration between simulations of this computational model and experiments could be low as 2.0%. A higher dissolved oxygen concentration was distributed in the flow separation and throat gas–liquid blocking zones, indicating that a surge in the flow velocity led to an increased mass transfer rate. In addition, a parametric study was conducted to consider the impact of the oxygen volume fraction and initial dissolved oxygen concentration on the real-time concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.