Abstract
BackgroundMicroRNAs (miRNAs) are post-transcriptional regulators involved in numerous biological processes including the pathogenesis of Alzheimer’s disease (AD). A key gene of AD, ADAM10, controls the proteolytic processing of APP and the formation of the amyloid plaques and is known to be regulated by miRNA in hepatic cancer cell lines. To predict miRNAs regulating ADAM10 expression concerning AD, we developed a computational approach.MethodsMiRNA binding sites in the human ADAM10 3' untranslated region were predicted using the RNA22, RNAhybrid and miRanda programs and ranked by specific selection criteria with respect to AD such as differential regulation in AD patients and tissue-specific expression. Furthermore, target genes of miR-103, miR-107 and miR-1306 were derived from six publicly available miRNA target site prediction databases. Only target genes predicted in at least four out of six databases in the case of miR-103 and miR-107 were compared to genes listed in the AlzGene database including genes possibly involved in AD. In addition, the target genes were used for Gene Ontology analysis and literature mining. Finally, we used a luciferase assay to verify the potential effect of these three miRNAs on ADAM10 3'UTR in SH-SY5Y cells.ResultsEleven miRNAs were selected, which have evolutionary conserved binding sites. Three of them (miR-103, miR-107, miR-1306) were further analysed as they are linked to AD and most strictly conserved between different species. Predicted target genes of miR-103 (p-value = 0.0065) and miR-107 (p-value = 0.0009) showed significant overlap with the AlzGene database except for miR-1306. Interactions between miR-103 and miR-107 to genes were revealed playing a role in processes leading to AD. ADAM10 expression in the reporter assay was reduced by miR-1306 (28%), miR-103 (45%) and miR-107 (52%).ConclusionsOur approach shows the requirement of incorporating specific, disease-associated selection criteria into the prediction process to reduce the amount of false positive predictions. In summary, our method identified three miRNAs strongly suggested to be involved in AD, which possibly regulate ADAM10 expression and hence offer possibilities for the development of therapeutic treatments of AD.
Highlights
MicroRNAs are post-transcriptional regulators involved in numerous biological processes including the pathogenesis of Alzheimer’s disease (AD)
An additional confirmation of miRNA being involved in AD is a binding site to a target gene, which is involved in AD, described in the literature and the miRNA might regulate other AD key genes such as a disintegrin and metalloproteinase 10” (ADAM10)
We established a computational approach for the identification of miRNAs putatively influencing the expression of ADAM10
Summary
MicroRNAs (miRNAs) are post-transcriptional regulators involved in numerous biological processes including the pathogenesis of Alzheimer’s disease (AD). MicroRNAs (miRNAs) are on average 22 nucleotides long and play a pivotal role in gene regulation. These small RNAs regulate the gene expression posttranscriptionally by suppression of mRNA translation, stimulation of mRNA deadenylation and degradation or induction of target mRNA cleavage, but have the potential to activate translation [1,2]. MiRNAs are involved in neuronal functions like neurite outgrowth and brain development. They were recently described to play a role in human neurodegenerative diseases. Changes in miRNA expression profiles or miRNA target sequences could contribute to the development of Parkinson’s disease and Alzheimer’s disease (AD) [5,6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.