Abstract

A preconditioned method with characteristic boundary conditions for Navier–Stokes equations is implemented for flowfield analysis of a high-lift configuration at low Mach number. A preconditioned Harten-Lax-van Leer-Einfeldt-Wada scheme is adopted for the spatial discretization, and the dissipation term of which is rededuced to reduce the overlarge numerical dissipation. Preconditioned characteristic boundary conditions for the far field are derived based on the Weiss–Smith preconditioner and are demonstrated to be more reliable and accurate when coupled with the preconditioned method. A preconditioned Lower-Upper Symmetric Gauss-Seidel implicit time-marching method is modified according to the preconditioned Jacobian matrix. The applications of the current method on both two- and three-dimensional high-lift configurations indicate that the use of the preconditioned spatial and time discrete schemes and the derived preconditioned characteristic boundary conditions is capable of improving the robustness, efficiency, and accuracy of the computational-fluid-dynamics solver for low-Mach-number aerodynamic simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.