Abstract

A computational fluid dynamics (CFD) model for simulating the chemical reaction process in a gas–particle circulating fluidized bed (CFB) downer is introduced by combining the two-fluid model (TFM) for the gas–particle turbulent flows and the c2¯−εc model for the turbulent mass transfer. With the proposed model, the species concentration and solid volume fraction as well as the velocity distributions along the CFB downer are able to be predicted. In mathematical expression of the proposed model, the recently developed formulations of c2¯−εc is adopted to close the turbulent mass transfer equations so that the turbulent mass diffusivity can be determined without relying on empirical methods. As for the gas–solid two phase turbulent momentum transfer equations, the methodology of kg−εg−kp−εp−Θ is used for their closures. To validate the proposed model, simulation is carried out for the catalytic ozone decomposition in a gas–solid CFB downer. The simulation results are compared with the experimental data and satisfactory agreement is found between them in both axial/radial distributions of concentration and solid volume fraction. Furthermore, the simulations reveal that the turbulent mass diffusivity varies along axial and radial directions, and the turbulent Schmidt number is not a constant throughout the CFB downer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.