Abstract

To investigate the relationships between upstream venous sinus stenosis and pulsatile tinnitus (PT), and to assess the correlation with diverticulum growth and the effectiveness of stent implantation. Patient-specific geometric models were constructed using computed tomography venography images from a patient with PT, with sigmoid sinus diverticulum, and with upstream transverse sinus stenosis, in whom stenting of the upstream sinus stenosis alone achieved complete remission of PT. Computational fluid dynamics simulation based on this patient-specific geometry was performed using commercially available finite element software (ANSYS-14) to qualitatively and quantitatively compare the flow velocity, flow rate, velocity vector, pressure, vorticity, and wall shear stress on the affected side transverse and sigmoid sinuses, before and after stent implantation. Stenting improved the flow direction and magnitude. After stenting, the flow pattern became smoother and more regular. High-speed blood flow at the level of the diverticulum neck was confined to a smaller area, and its direction changed from approximately perpendicular to the diverticular dome to the distal side of the diverticular neck. The diverticulum showed obvious flow reduction, with decreases of 80.7%, 68.7%, 96.1%, and 91.3% in peak velocity, inflow rate, pressure gradient, and peak vorticity, respectively. The abnormally low wallshear stress at the dome of diverticulum was eliminated. Our findings strongly support a major role of diverticulum stenosis before in PT development and suggest that such stenosis is a causative factor of diverticulum growth. They also confirm the effectiveness of stent implantation for the treatment of PT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.